
An approach for security and prevent Duplication in

Datacenter
Vasanthkumar s, sivakumaran s

Vasanthkumar041@gmail.com

Abstract—Data deduplication is one of important data

compression techniques for eliminating duplicate copies

of repeating data, and has been widely used in

datacenters to reduce the amount of storage space and

save bandwidth. In most organizations, the storage

systems contain duplicate copies of many pieces of data.

For example, the same file may be saved in several

different places by different users, or two or more files

that aren't identical may still include much of the same

data. Deduplication eliminates these extra copies by

saving just one copy of the data and replacing the other

copies with pointers that lead back to the original copy.

To protect the confidentiality of sensitive data while

supporting deduplication, the convergent encryption

technique has been proposed to encrypt the data before

outsourcing.

 The Hashing technique has been proposed to

find the duplication and preventing the duplication.

For protecting the confidentiality of the data the Data

encryption standard Algorithm has been used to

encrypt the data We show that our proposed

authorized duplicate check scheme incurs minimal

overhead compared to normal operations.

Index Terms—Deduplication, authorized duplicate

check, confidentiality, hybrid cloud

1 INTRODUCTION

Cloud computing provides seemingly unlimited “virtualized”

resources to users as services across the whole Internet, while

hiding platform and implementation details. Today’s cloud

service providers offer both highly available storage and

massively parallel computing resources at relatively low

costs. As cloud computing becomes prevalent, an increasing

amount of data is being stored in the cloud and shared by

users with specified privileges, which define the access rights

of the stored data. One critical challenge of cloud storage

services is the management of the ever-increasing volume of

data.

To make data management scalable in cloud computing,

deduplication [17] has been a well-known technique and has

attracted more and more attention recently. Data

deduplication is a specialized data compression technique for

eliminating duplicate copies of repeating data in storage. The

technique is used to improve storage utilization and can also

be applied to network data transfers to reduce the number of

bytes that must be sent. Instead of keeping multiple data

copies with the same content, deduplication eliminates

redundant data by keeping only one physical copy and

referring other redundant data to that copy. Deduplication

can take

place at either the file level or the block level. For filelevel

deduplication, it eliminates duplicate copies of the same file.

Deduplication can also take place at the block level, which

eliminates duplicate blocks of data that occur in non-identical

files.

Although data deduplication brings a lot of benefits,

security and privacy concerns arise as users’ sensitive data

are susceptible to both insider and outsider attacks.

Traditional encryption, while providing data confidentiality,

is incompatible with data deduplication. Specifically,

traditional encryption requires different users to encrypt their

data with their own keys. Thus, identical data copies of

different users will lead to different ciphertexts, making

deduplication impossible. Convergent encryption [8] has

been proposed to enforce data confidentiality while making

deduplication feasible. It encrypts/decrypts a data copy with

a convergent key, which is obtained by computing the

cryptographic hash value of the content of the data copy.

After key generation and data encryption, users retain the

keys and send the ciphertext to the cloud. Since the

encryption operation is deterministic and is derived from the

data content, identical data copies will generate the same

convergent key and hence the same ciphertext. To prevent

unauthorized access, a secure proof of ownership protocol

[11] is also needed to provide the proof that the user indeed

owns the same file when a duplicate is found. After the

proof, subsequent users with the same file will be provided a

pointer from the server without needing to upload the same

file. A user can download the encrypted file with the pointer

from the server, which can only be decrypted by the

corresponding data owners with their convergent keys. Thus,

convergent encryption allows the cloud to perform

deduplication on the ciphertexts and the proof of ownership

prevents the unauthorized user to access the file.

However, previous deduplication systems cannot support

differential authorization duplicate check, which is important

in many applications. In such an authorized deduplication

system, each user is issued a set of privileges during system

initialization (in Section 3, we elaborate the definition of a

privilege with examples). Each file uploaded to the cloud is

also bounded by a set of privileges to specify which kind of

users is allowed to perform the duplicate check and access

the files. Before submitting his duplicate check request for

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518

122

IJSER © 2017
http://www.ijser.org

IJSER

some file, the user needs to take this file and his own

privileges as inputs. The user is able to find a duplicate for

this file if and only if there is a copy of this file and a

matched privilege stored in cloud. For example, in a

company, many different privileges will be assigned to

employees. In order to save cost and efficiently management,

the data will be moved to the storage server provider (SCSP)

in the public cloud with specified privileges and the

deduplication technique will be applied to store only one

copy of the same file. Because of privacy consideration,

some files will be encrypted and allowed the duplicate check

by employees with specified privileges to realize the access

control. Traditional deduplication systems based on

convergent encryption, although providing confidentiality to

some extent, do not support the duplicate check with

differential privileges. In other words, no differential

privileges have been considered in the deduplication based

on convergent encryption technique. It seems to be

contradicted if we want to realize both deduplication and

differential authorization duplicate check at the same time.

2 SYSTEM MODEL

 Hybrid Architecture for Secure Deduplication

At a high level, our setting of interest is an enterprise

network, consisting of a group of affiliated clients (for

example, employees of a company) who will use the S-CSP

and store data with deduplication technique. In this setting,

deduplication can be frequently used in these settings for data

backup and disaster recovery applications while greatly

reducing storage space. Such systems are widespread and are

often more suitable to user file backup and synchronization

applications than richer storage abstractions. There are three

entities defined in our system, that is, users, private cloud

and S-CSP in public cloud as shown in Fig. 1. The S-CSP

performs deduplication by checking if the contents of two

files are the same and stores only one of them.

The access right to a file is defined based on a set of

privileges. The exact definition of a privilege varies across

applications. For example, we may define a rolebased

privilege [9], [19] according to job positions (e.g., Director,

Project Lead, and Engineer), or we may define a time-based

privilege that specifies a valid time period (e.g., 2014-01-01

to 2014-01-31) within which a file can be accessed. A user,

say Alice, may be assigned two privileges “Director” and

“access right valid on 201401-01”, so that she can access any

file whose access role is “Director” and accessible time

period covers 2014-0101. Each privilege is represented in the

form of a short message called token. Each file is associated

with some file tokens, which denote the tag with specified

privileges (see the definition of a tag in Section 2). A user

computes and sends duplicate-check tokens to the public

cloud for authorized duplicate check.

Users have access to the private cloud server, a

semitrusted third party which will aid in performing

deduplicable encryption by generating file tokens for the

requesting users. We will explain further the role of the

private cloud server below. Users are also provisioned with

per-user encryption keys and credentials (e.g., user

certificates). In this paper, we will only consider the filelevel

deduplication for simplicity. In another word, we refer a data

copy to be a whole file and file-level deduplication which

eliminates the storage of any redundant files. Actually,

block-level deduplication can be easily deduced from file-

level deduplication, which is similar to [12]. Specifically, to

upload a file, a user first performs the file-level duplicate

check. If the file is a duplicate, then all its blocks must be

duplicates as well; otherwise, the user further performs the

block-level duplicate check and identifies the unique blocks

to be uploaded. Each data copy (i.e., a file or a block) is

associated with a token for the duplicate check.

• S-CSP. This is an entity that provides a data storage service

in public cloud. The S-CSP provides the data outsourcing

service and stores data on behalf of the users. To reduce the

storage cost, the S-CSP eliminates the storage of redundant

data via deduplication and keeps only unique data. In this

paper, we assume that S-CSP is always online and has

abundant storage capacity and computation power. • Data

Users. A user is an entity that wants to outsource data storage

to the S-CSP and access the data later. In a storage system

supporting deduplication, the user only uploads unique data

but does not upload any duplicate data to save the upload

bandwidth, which may be owned by the same user or

different users. In the authorized deduplication system, each

user is issued a set of privileges in the setup of the system.

Each file is protected with the convergent encryption key and

privilege keys to realize the authorized deduplication with

differential privileges.

• Private Cloud. Compared with the traditional deduplication

architecture in cloud computing, this is a new entity

introduced for facilitating user’s secure usage of cloud

service. Specifically, since the computing resources at data

user/owner side are restricted and the public cloud is not

fully trusted in practice, private cloud is able to provide data

user/owner with an execution environment and infrastructure

working as an interface between user and the public cloud.

The private keys for the privileges are managed by the

private cloud, who answers the file token requests from the

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518

123

IJSER © 2017
http://www.ijser.org

IJSER

users. The interface offered by the private cloud allows user

to submit files and queries to be securely stored and

computed respectively.

Notice that this is a novel architecture for data

deduplication in cloud computing, which consists of a twin

clouds (i.e., the public cloud and the private cloud). Actually,

this hybrid cloud setting has attracted more and more

attention recently.

3 Proposed System Description

To solve the problems of the construction in Section 4.1, we

propose another advanced deduplication system supporting

authorized duplicate check. In this new deduplication system,

a hybrid cloud architecture is introduced to solve the

problem. The private keys for privileges will not be issued to

users directly, which will be kept and managed by the private

cloud server instead. In this way, the users cannot share these

private keys of privileges in this proposed construction,

which means that it can prevent the privilege key sharing

among users in the above straightforward construction. To

get a file token, the user needs to send a request to the private

cloud server. The intuition of this construction can be

described as follows. To perform the duplicate check for

some file, the user needs to get the file token from the private

cloud server. The private cloud server will also check the

user’s identity before issuing the corresponding file token to

the user. The authorized duplicate check for this file can be

performed by the user with the public cloud before uploading

this file. Based on the results of duplicate check, the user

either uploads this file or runs PoW.

Before giving our construction of the deduplication

system, we define a binary relation R = {((p,p′)} as follows.

Given two privileges p and p′, we say that p matches p′ if and

only if R(p,p′) = 1. This kind of a generic binary relation

definition could be instantiated based on the background of

applications, such as the common hierarchical relation. More

precisely, in a hierarchical relation, p matches p′ if p is a

higher-level privilege. For example, in an enterprise

management system, three hierarchical privilege levels are

defined as Director, Project lead, and Engineer, where

Director is at the top level and Engineer is at the bottom

level. Obviously, in this simple example, the privilege of

Director matches the privileges of Project lead and Engineer.

We provide the proposed deduplication system as follows.

System Setup. The privilege universe P is defined as in

Section 4.1. A symmetric key kpi for each pi ∈ P will be

selected and the set of keys {kpi}pi∈P will be sent to the private

cloud. An identification protocol Π = (Proof, Verify) is also

defined, where Proof and Verify are the proof and

verification algorithm respectively. Furthermore, each user U
is assumed to have a secret key skU to perform the

identification with servers. Assume that user U has the

privilege set PU. It also initializes a PoW protocol POW for

the file ownership proof. The private cloud server will

maintain a table which stores each user’s public information

pkU and its corresponding privilege set PU. The file storage

system for the storage server is set to be ⊥.

File Uploading. Suppose that a data owner wants to upload

and share a file F with users whose privilege belongs to the

set PF = {pj}. The data owner needs interact with the private

cloud before performing duplicate check with the S-CSP.

More precisely, the data owner performs an identification to

prove its identity with private key skU. If it is passed, the

private cloud server will find the corresponding privileges PU

of the user from its stored table list. The user computes and

sends the file tag ϕF = TagGen(F) to the private cloud server,

who will return {ϕ′F,pτ = TagGen(ϕF,kpτ)} If a file duplicate is

found, the user needs to run the PoW protocol POW with the

S-CSP to prove the file ownership. If the proof is passed, the

user will be provided a pointer for the file. Furthermore, a

proof from the S-CSP will be returned, which could be a

signature on and a time stamp.

The user sends the privilege set PF = {pj} for the file

F as well as the proof to the private cloud server.

Upon receiving the request, the private cloud server

first verifies the proof from the S-CSP. If it is

passed, the private cloud server
computes

{ϕ′F,pτ =

TagGen(ϕF,kpτ)} for all pτ satisfying R(p,pτ) = 1 for

each p ∈ PF-PU, which will be returned to the user.

The user also uploads these tokens of the file F to the

private cloud server. Then, the privilege set of the

file is set to be the union of PF and the privilege sets

defined by the other data owners.

• Otherwise, if no duplicate is found, a proof from the

S-CSP will be returned, which is also a signature on

{ϕ′F,pτ}, pkU and a time stamp. The user sends the

privilege set PF = {pj} for the file F as well as the

proof to the private cloud server. Upon receiving the

request, the private cloud server first verifies the

proof from the S-CSP. If it is passed, the private

cloud server
computes

{ϕ′F,pτ = TagGen(ϕF,kpτ)} for

all pτ satisfying R(p,pτ) = 1 and p ∈ PF. Finally, the

user computes the encrypted file CF = EncCE(kF,F)
with the convergent key kF = KeyGenCE(F) and

uploads {CF,{ϕ′F,pτ}} with privilege P F.

File Retrieving. The user downloads his files in the same

way as the deduplication system in Section 4.1. That is,

the user can recover the original file with the convergent

key kF after receiving the encrypted data from the S-CSP.

kF,p. In this way, both the private cloud server and S-CSP

cannot decrypt the ciphertext. Furthermore, it is semantically

secure to the S-CSP based on the security of symmetric

encryption. For S-CSP, if the file is unpredicatable, then it is

semantically secure too. The details of the scheme, which has

been instantiated with hash functions for simplicity, are

described below.

System Setup. The privilege universe P and the symmetric

key kpi for each pi ∈ P will be selected for the private cloud as

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518

124

IJSER © 2017
http://www.ijser.org

IJSER

above. An identification protocol Π = (Proof, Verify) is also

defined. The proof of ownership POW is instantiated by hash

functions H,H0,H1 and H2, which will be shown as follows.

The private cloud server maintains a table which stores each

user’s identity and its corresponding privilege.

File Uploading. Suppose that a data owner with privilege p
wants to upload and share a file F with users whose privilege

belongs to the set P = {pj}. The data owner performs the

identification and sends H(F) to the private cloud server.

Two file tag sets {ϕF,pτ =

H0(H(F),kpτ)}
and

{ϕ′F,pτ = H1(H(F),kpτ)} for all pτ satisfying

R(p,pτ) = 1 and p ∈ PU will be sent back to the user if the

identification passes. After receiving the tag {ϕF,pτ}, and

{ϕ′F,pτ}, the user will interact and send these two tag sets to

the S-CSP. If a file duplicate is found, the user needs to run

the PoW protocol POW with the S-CSP to prove the file

ownership. If the proof is also passed, the user will be

provided a pointer for the file. Otherwise, if no duplicate is

found, a proof from the S-CSP will be returned, which could

be a signature. The user sends the privilege set P = {pj} as

well as the proof to the private cloud server for file upload

request. Upon receiving the request, the private cloud server

verifies the signature first. If it is passed, the private cloud

server will compute ϕF,pj = H0(H(F),kpj) and ϕ′F,pj =
H1(H(F),kpj) for each pj satisfying R(p,pj) = 1 and p ∈ PF,

which will be returned to the user. Finally, the user computes

the encryption CF = EncSE(k,F), where k is random key, which

will be encrypted into ciphertext Ck,pj with each key in {kF,pj =
ϕF,pj ⊕H2(F)} using a symmetric encryption algorithm.

Finally, the user uploads {ϕ′F,pj,CF,Ck,pj}.

File Retrieving. The procedure of file retrieving is

similar to the construction in Section 4.2. Suppose a user

wants to download a file F. The user first uses his key kF,pj

to decrypt Ck,pj and obtain k. Then the user uses k to

recover the original file F.

4 SECURITY ANALYSIS

Our system is designed to solve the differential privilege

problem in secure deduplication. The security will be

analyzed in terms of two aspects, that is, the authorization

of duplicate check and the confidentiality of data. Some

basic tools have been used to construct the secure

deduplication, which are assumed to be secure. These

basic tools include the convergent encryption scheme,

symmetric encryption scheme, and the PoW scheme.

Based on this assumption, we show that systems are

secure with respect to the following security analysis.

Confidentiality of Data

The data will be encrypted in our deduplication system

before outsourcing to the S-CSP. Furthermore, two kinds of

different encryption methods have been applied in our two

constructions. Thus, we will analyze them respectively. In

the scheme in Section 4.2, the data is encrypted with the

traditional encryption scheme. The data encrypted with such

encryption method cannot achieve semantic security as it is

inherently subject to bruteforce attacks that can recover files

falling into a known set. Thus, several new security notations

of privacy against chosen-distribution attacks have been

defined for unpredictable message. In another word, the

adapted security definition guarantees that the encryptions of

two unpredictable messages should be indistinguishable.

Thus, the security of data in our first construction could be

guaranteed under this security notion.

We discuss the confidentiality of data in our further

enhanced construction in Section 4.3. The security analysis

for external adversaries and internal adversaries is almost

identical, except the internal adversaries are provided with

some convergent encryption keys additionally. However,

these convergent encryption keys have no security impact on

the data confidentiality because these convergent encryption

keys are computed with different privileges. Recall that the

data are encrypted with the symmetric key encryption

technique, instead of the convergent encryption method.

Though the symmetric key k is randomly chosen, it is

encrypted by another convergent encryption key kF,p. Thus,

we still need analyze the confidentiality of data by

considering the convergent encryption. Different from the

previous one, the convergent key in our construction is not

deterministic in terms of the file, which still depends on the

privilege secret key stored by the private cloud server and

unknown to the adversary. Therefore, if the adversary does

not collude with the private cloud server, the confidentiality

of our second construction is semantically secure for both

predictable and unpredictable file. Otherwise, if they collude,

then the confidentiality of file will be reduced to convergent

encryption because the encryption key is deterministic.

5 IMPLEMENTATION

We implement a prototype of the proposed authorized

deduplication system, in which we model three entities as

separate C++ programs. A Client program is used to

model the data users to carry out the file upload process.

A Private Server program is used to model the private

cloud which manages the private keys and handles the file

token computation. A Storage Server program is used to

model the S-CSP which stores and deduplicates files. We

implement cryptographic operations of hashing and

encryption with the OpenSSL library [1]. We also

implement the communication between the entities based

on HTTP, using GNU Libmicrohttpd [10] and libcurl

[13]. Thus, users can issue HTTP Post requests to the

servers.

Our implementation of the Client provides the

following function calls to support token generation and

deduplication along the file upload process.

• FileTag(File) - It computes SHA-1 hash of the File

as File Tag;

• TokenReq(Tag, UserID) - It requests the Private

Server for File Token generation with the File Tag

and User ID;

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518

125

IJSER © 2017
http://www.ijser.org

IJSER

• DupCheckReq(Token) - It requests the Storage

Server for Duplicate Check of the File by sending

the file token received from private server;

• ShareTokenReq(Tag, {Priv.}) - It requests the

Private Server to generate the Share File Token with

the File Tag and Target Sharing Privilege Set;

• FileEncrypt(File) - It encrypts the File with

Convergent Encryption using 256-bit AES algorithm

in cipher block chaining (CBC) mode, where the

convergent key is from SHA-256 Hashing of the

file; and

• FileUploadReq(FileID, File, Token) - It uploads the

File Data to the Storage Server if the file is Unique

and updates the File Token stored.

Our implementation of the Private Server includes

corresponding request handlers for the token generation

and maintains a key storage with Hash Map.

• TokenGen(Tag, UserID) - It loads the associated

privilege keys of the user and generate the token

with HMAC-SHA-1 algorithm; and

 ShareTokenGen(Tag, {Priv.}) - It generates the share

token with the corresponding privilege keys of the

sharing privilege set with HMAC-SHA-1 algorithm.

Our implementation of the Storage Server provides

deduplication and data storage with following handlers and

maintains a map between existing files and associated token

with Hash Map.

• DupCheck(Token) - It searches the File to Token

Map for Duplicate; and

• FileStore(FileID, File, Token) - It stores the File on

Disk and updates the Mapping.

6 EVALUATION

We conduct testbed evaluation on our prototype. Our

evaluation focuses on comparing the overhead induced by

authorization steps, including file token generation and share

token generation, against the convergent encryption and file

upload steps. We evaluate the overhead by varying different

factors, including 1) File Size 2) Number of Stored Files 3)

Deduplication Ratio 4) Privilege Set Size . We also evaluate

the prototype with a real-world workload based on VM

images.

We conduct the experiments with three machines equipped

with an Intel Core-2-Quad 2.66GHz Quad Core CPU, 4GB

RAM and installed with Ubuntu 12.04 32Bit Operation

System. The machines are connected with 1Gbps Ethernet

network.

We break down the upload process into 6 steps, 1)

Tagging 2) Token Generation 3) Duplicate Check 4) Share

Token Generation 5) Encryption 6) Transfer . For each step,

we record the start and end time of it and therefore obtain the

breakdown of the total time spent. We present the average

time taken in each data set in the figures.

any deduplication opportunity) of particular file size and

record the time break down. Using the unique files

enables us to evaluate the worst-case scenario where we

have to upload all file data. The average time of the steps

from test sets of different file size are plotted in Figure 2.

The time spent on tagging, encryption, upload increases

linearly with the file size, since these operations involve

the actual file data and incur file I/O with the whole file.

In contrast, other steps such as token generation and

duplicate check only use the file metadata for

computation and therefore the time spent remains

constant. With the file size increasing from 10 MB to

400MB, the overhead of the proposed authorization steps

decreases from 14.9% to 0.483 %.

Number of Stored Files

To evaluate the effect of number of stored files in the

system, we upload 10000 10MB unique files to the

system and record the breakdown for every file upload.

From Figure 3, every step remains constant along the

time. Token checking is done with a hash table and a

linear search would be carried out in case of collision.

Despite of the possibility of a linear search, the time taken

in duplicate check remains stable due to the low collision

probability.Deduplication Ratio To evaluate the effect of

the deduplication ratio, we prepare two unique data sets,

each of which consists of 50 100MB files. We first

upload the first set as an initial upload. For the second

upload, we pick a portion of 50 files, according to the

given deduplication ratio, from the initial set as duplicate

files and remaining files from the second set as unique

files. The average time of uploading the second set is

presented in Figure 4. As uploading and encryption would

be skipped in case of duplicate files, the time spent on

both of them decreases with increasing

deduplication ratio. The time spent on duplicate check also

decreases as the searching would be ended when duplicate is

found. Total time spent on uploading the file with

deduplication ratio at 100% is only 33.5% with unique files.

Privilege Set Size

To evaluate the effect of privilege set size, we upload 100

10MB unique files with different size of the data owner and

target share privilege set size. In Figure 5, it shows the time

taken in token generation increases linearly as more keys are

associated with the file and also the duplicate check time.

While the number of keys increases 100 times from 1000 to

100000, the total time spent only increases to 3.81 times and

it is noted that the file size of the experiment is set at a small

level (10MB), the effect would become less significant in

case of larger files.

image snapshots collected over a 12-week span in a

university programming course, while the same dataset is

also used in the prior work [14]. We perform blocklevel

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518

126

IJSER © 2017
http://www.ijser.org

IJSER

deduplication with a fixed block size of 4KB. The initial

data size of an image is 3.2GB (excluding all zero

blocks). After 12 weeks, the average data size of an

image increases to 4GB and the average deduplication

ratio is 97.9%. For privacy, we only collected

cryptographic hashes on 4KB fixed-size blocks; in other

words, the tagging phase is done beforehand. Here, we

randomly pick 10 VM image series to form the dataset.

Figure 6 shows that the time taken in token generation

and duplicate checking increases linearly as the VM

image grows in data size. The time taken in encryption

and data transfer is low because of the high deduplication

ratio. Time taken for the first week is the highest as the

initial upload contains more unique data. Overall, the

results are consistent with the prior experiments that use

synthetic workloads.

7 CONCLUSION

In this paper, the notion of authorized data deduplication

was proposed to protect the data security by including

differential privileges of users in the duplicate check. We

also presented several new deduplication constructions

supporting authorized duplicate check in hybrid cloud

architecture, in which the duplicate-check tokens of files

are generated by the private cloud server with private

keys. Security analysis demonstrates that our schemes are

secure in terms of insider and outsider attacks specified in

the proposed security model. As a proof of concept, we

implemented a prototype of our proposed authorized

duplicate check scheme and conduct testbed experiments

on our prototype. We showed that our authorized

duplicate check scheme incurs minimal overhead

compared to convergent encryption and network transfer.

REFERENCES

[1] OpenSSL Project. http://www.openssl.org/.

[2] P. Anderson and L. Zhang. Fast and secure laptop backups with
encrypted de-duplication. In Proc. of USENIX LISA, 2010.

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart. Dupless: Serveraided
encryption for deduplicated storage. In USENIX Security Symposium,
2013.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart.

[5] M. Bellare, C. Namprempre, and G. Neven. Security proofs for
identity-based identification and signature schemes. J. Cryptology,
22(1):1–61, 2009.

[6] M. Bellare and A. Palacio. Gq and schnorr identification schemes:
Proofs of security against impersonation under active and concurrent
attacks. In CRYPTO, pages 162–177, 2002.

[7] S. Bugiel, S. Nurnberger, A. Sadeghi, and T. Schneider. Twin clouds:
An architecture for secure cloud computing. In Workshop on
Cryptography and Security in Clouds (WCSC 2011), 2011.

[8] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.
Reclaiming space from duplicate files in a serverless distributed file
system. In ICDCS, pages 617–624, 2002.

[9] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15 th NIST-
NCSC National Computer Security Conf., 1992.

[10] GNU Libmicrohttpd. http://www.gnu.org/software/libmicrohttpd/.

[11] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of
ownership in remote storage systems. In Y. Chen, G. Danezis, and V.
Shmatikov, editors, ACM Conference on Computer and
Communications Security, pages 491–500. ACM, 2011.

[12] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou. Secure deduplication
with efficient and reliable convergent key management. In IEEE
Transactions on Parallel and Distributed Systems, 2013.

[13] A.Suresh (2016), “Speech Stress Analysis based on Lie Detector for

Loyalty Test”, in International Journal of Printing, Packaging & Allied
Sciences,(IJPPAS) ISSN: 2320- 4387, Vol. 04, No.01, December 2016,
pp.631 – 638.

International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017
ISSN 2229-5518

127

IJSER © 2017
http://www.ijser.org

IJSER

